Soft Sensing Based on Hilbert-Huang Transform and Wavelet Support Vector Machine
نویسندگان
چکیده
At present, much more soft sensing have been widely used in industrial process control to improve the quality of product and assure safety in production. A novel method using Hilbert-Huang transform (HHT) combined with wavelet support vector machine (WSVM) is put forward. Firstly the method analyzes the intrinsic mode function (IMF) obtained after the empirical mode decomposition (EMD), then extracts IMF energy feature as the input feature vectors of the wavelet support vector machine. Based on the wavelet analysis and conditions of the support vector kernel function, a novel multi-dimension admissible support vector wavelet kernel function is presented, which is a multidimensional wavelet kernel, thus enhancing the generalization ability of the SVM. The proposed method is used to build soft sensing of diesel oil solidifying point. Compared with other two models, the result shows that HHT-WSVM approach has a better prediction and generalization.
منابع مشابه
دسته بندی و شناسائی اهداف زیرآبی بر اساس اصوات منتشره
This paper investigates an underwater noise target classification algorithm in order to identify vessels in shallow water. To this aim the Hilbert Huang transform has been used to extract features in order to be used in a classifier. The Support Vector Machine has been considered to identify targets. The proposed method based on Hilbert Huang Transform shows considerable gain against similar ap...
متن کاملEpileptic Seizure Prediction Using Hybrid Feature Selection
A comprehensive research of Electroencephalography (EEG) is carried out on Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) domains. In this scenario, the hybrid feature extraction is performed by utilizing entropy features like Shannon entropy, log-energy entropy and Renyi entropy. Generally, the entropy measures are effective in evaluation of non-linear interrelation an...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کامل